Biharmonic and harmonic homomorphisms between Riemannian three dimensional unimodular Lie groups

نویسندگان

چکیده

We classify biharmonic and harmonic homomorphisms f:(G,g1)⟶(G,g2) where G is a connected simply three-dimensional unimodular Lie group g1 g2 are left invariant Riemannian metrics.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ricci Flow on Three-dimensional, Unimodular Metric Lie Algebras

We give a global picture of the Ricci flow on the space of three-dimensional, unimodular, nonabelian metric Lie algebras considered up to isometry and scaling. The Ricci flow is viewed as a two-dimensional dynamical system for the evolution of structure constants of the metric Lie algebra with respect to an evolving orthonormal frame. This system is amenable to direct phase plane analysis, and ...

متن کامل

Information-Theoretic Inequalities on Unimodular Lie Groups

Classical inequalities used in information theory such as those of de Bruijn, Fisher, Cramér, Rao, and Kullback carry over in a natural way from Euclidean space to unimodular Lie groups. These are groups that possess an integration measure that is simultaneously invariant under left and right shifts. All commutative groups are unimodular. And even in noncommutative cases unimodular Lie groups s...

متن کامل

Slant helices in three dimensional Lie groups

In this paper, we define slant helices in three dimensional Lie Groups with a bi-invariant metric and obtain a characterization of slant helices. Moreover, we give some relations between slant helices and their involutes, spherical images.

متن کامل

Harmonic Mappings between Riemannian

Harmonic mappings between two Riemannian manifolds is an object of extensive study, due to their wide applications in mathematics, science and engineering. Proving the existence of such mappings is challenging because of the non-linear nature of the corresponding partial differential equations. This thesis is an exposition of a theorem by Eells and Sampson, which states that any given map from ...

متن کامل

Hilbert-schmidt Groups as Infinite-dimensional Lie Groups and Their Riemannian Geometry

We describe the exponential map from an infinite-dimensional Lie algebra to an infinite-dimensional group of operators on a Hilbert space. Notions of differential geometry are introduced for these groups. In particular, the Ricci curvature, which is understood as the limit of the Ricci curvature of finite-dimensional groups, is calculated. We show that for some of these groups the Ricci curvatu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2021

ISSN: ['1879-1662', '0393-0440']

DOI: https://doi.org/10.1016/j.geomphys.2021.104178